Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester Analysis I

Back paper Examination Date : Dec. 30, 2019 Total Marks: 105 Maximum marks: 100 Time: 3 hours Teacher: B V Rajarama Bhat

Notation: $\mathbb{N} = \{1, 2, 3, ...\}$ is the set of natural numbers and \mathbb{R} is the set of real numbers.

- (1) Let A be the set of all finite subsets of rational numbers. Is A countable or uncountable? Prove your claim. [15]
- (2) Show that every sequence of real numbers has a monotonic subsequence. [15]
- (3) Compute lim inf and lim sup of following sequences: (i) $a_n = \frac{1}{2^n} + (-1)^n \frac{1}{3n}, \ n \ge 1;$ (ii) $b_n = |(\frac{1}{2} - \frac{1}{n})| + 5, \ n \ge 1;$ (iii) $c_n = a_n + b_n, \ n \ge 1.$
- (4) Find all continuous functions $q: \mathbb{R} \to \mathbb{R}$ which satisfy

$$g(x + \frac{1}{n}) = g(x), \ \forall n \in \mathbb{N} \text{ and } x \in \mathbb{R}.$$
[15]

[15]

- (5) Let a, b, a_1, b_1 be real numbers with a < b and $a_1 < b_1$. Let $f : [a, b] \to [a_1, b_1]$ be a continuous bijection. Show that f^{-1} is continuous. Suppose a < c < band $c_1 = f(c)$. Show that if f is differentiable at c and $f'(c) \neq 0$ then f^{-1} is differentiable at c_1 . |15|
- (6) State and prove mean value theorem for a real valued function on an interval [a,b].|15|
- (7) Find first three terms of the Taylor expansion of the function $g: [-2, 2] \to \mathbb{R}$ defined by

$$g(x) = \frac{2x}{(x-3)(x+5)}, \ x \in [-2,2]$$

t $x_0 = 0$ and $x_1 = 1.$ [15]

around the point $x_0 = 0$ and x_1